Math 762 Spring 2016 Homework 1 Drew Armstrong

نویسنده

  • Drew Armstrong
چکیده

Problem 1. Infinite Products and Coproducts in Ab. We have seen that finite products and coproducts agree in Ab. However, the same is not true for infinite products and coproducts. Let I be a set and let {Ai}i∈I be a family of abelian groups, each equal to some fixed group A. (a) Show that the set AI := HomSet(I, A) is an abelian group. Furthermore, show that we can think of this group as the infinite product Πi∈IAi in the category Ab. (b) Let A⊕I denote the subgroup of AI in which all but finitely many elements of I are sent to the identity element 0 ∈ A. Show that we can think of A⊕I as the infinite coproduct ⊕ i∈I Ai in the category Ab. (c) Show that the inclusion A⊕I ⊆ AI can be strict. [Hint: Let A = Z/10Z and I = Z.]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Math 762 Spring 2016 Homework 3 Drew Armstrong

The Yoneda Lemma tells us that the Hom bifunctor is “non-degenerate” in a similar way. (a) For each object X ∈ C verify that hX := HomC(X,−) defines a functor C → Set. (b) Given two objects X,Y ∈ C state what it means to have hX ≈ hY as functors. (c) Given two objects X,Y ∈ C and an isomorphism of functors hX ≈ hY , prove that we have an isomorphism of objects X ≈ Y . [Hint: Let Φ : hX ∼ −→ hY ...

متن کامل

Math 762 Spring 2016

Proof. First note that the map φ is uniquely determined by its components φ11, φ12, φ21, φ22. Indeed, by the universal property of the coproduct M1 ⊕ M2 we see that φ is uniquely determined by the maps φ∗1 := φ◦ι1 and φ∗2 := φ◦ι2. Then from the universal property of the product N1⊕N2 we see that the map φ∗1 is uniquely determined by the maps φ11 = π1 ◦φ∗1 and φ21 = π2 ◦ φ∗1. Similarly, φ∗2 is u...

متن کامل

Math 562 Spring 2012 Homework 4 Drew Armstrong

Proof. First note that the zero element of the ring R/I is 0 + I = I and that a + I = I if and only if a ∈ I. Now suppose that I ⊆ R is a prime ideal and consider nonzero cosets a+ I and b+ I in R/I (i.e. consider a 6∈ I and b 6∈ I). Since I is prime this implies that ab 6∈ I, hence ab + I 6= I and we conclude that R/I is an integral domain. Conversely, let R/I be an integral domain and conside...

متن کامل

Math 661 Fall 2013 Homework 5 Drew Armstrong

(a) Prove that [G,G]CG. (b) Prove that the quotient Gab := G/[G,G] (called the abelianization of G) is abelian. (c) If N CG is any normal subgroup such that G/N is abelian, prove that [G,G] ≤ N . (d) Put everything together to prove the universal property of abelianization: Given a homomorphism φ : G→ A to an abelian group A, there exists a unique homomorphism φ̄ := Gab → A such that φ = φ̄ ◦ π, ...

متن کامل

Math 230 D Fall 2015 Homework 4 Drew Armstrong

(a) Prove that the sum and product of abstract symbols is well-defined. That is, if [a1, b1] = [a2, b2] and [c1, d1] = [c2, d2], prove that we have [a1, b1] · [c1, d1] = [a2, b2] · [c2, d2] and [a1, b1] + [c1, d1] = [a2, b2] + [c2, d2] . (b) One can check that Q satisfies all of the axioms of Z except for the Well-Ordering Axiom (please don’t check this), with additive identity [0, 1] ∈ Q and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016